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Abstract
The structure of states of the perturbed p-spin spherical spin-glass is
analysed. At low enough free energy, metastable states have a supersymmetric
structure, while at higher free energies the supersymmetry is broken. The
transition between the supersymmetric and the supersymmetry-breaking phase
is triggered by a change in the stability of states.

PACS numbers: 05.50.+q, 75.10.Nr, 12.60.Jv

It is well known that mean-field spin-glasses can be divided into two broad categories. On
the one hand, there are systems with a low-temperature thermodynamic phase described by
full (or continuous) breaking of the replica symmetry (FRSB). In these systems, the static
transition temperature Ts coincides with the temperature Td where the relaxation time diverges.
Moreover, the dynamical correlation function exhibits single-step relaxation, either exponential
(high temperature), or power-law (low temperature). The paradigm of these spin-glasses is the
Sherrington–Kirkpatrick (SK) model [1]. On the other hand, there are systems where the static
and dynamic transitions occur at different temperatures, namely Ts < Td . In these systems,
thermodynamics is described by a one-step breaking of the replica symmetry (1RSB), and the
dynamical correlation function develops, at low temperatures, a two-steps relaxation, typical
of structural glasses. The main representative of this second class is the p-spin spherical
model [2]. In mean-field spin-glasses, it seems that a given type of static behaviour is always
accompanied by a given type of dynamical behaviour. No mixed cases are known.

In disordered systems statics and dynamics are linked to each other by the structure of
states: lowest lying states, i.e. ground states, dominate the statics, whereas the dynamics is
ruled by metastable states with higher free energy. It is therefore reasonable that the origin of
the two different behaviours described above, and thus of the connection between statics and
dynamics, has to be sought in the structures of states of different systems. It is common wisdom,
for example, that metastable states play a much greater role in 1RSB than FRSB spin-glasses,
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and that for this reason dynamics is so much different from thermodynamics in 1RSB systems.
However, it would be important to have a mathematical formalization of the different structure
of states in the two classes. Recent studies [3–12] suggest that the Becchi–Rouet–Stora–Tyutin
(BRST) supersymmetry [13–17] may provide such a formalization.

The BRST supersymmetry is a transformation which leaves invariant the action which
one has to define in order to study the structure of metastable states in spin-glasses [3, 4,
18], and in particular when the complexity, i.e. the entropy of the states, is computed. As
always in physics, the symmetry of the action may or may not be shared by the actual physical
states. More specifically, in spin-glasses the complexity is equal to the action evaluated in its
stationary point: there are systems where the physical (stable) stationary point is symmetric,
and other systems where it is not. In this last case the supersymmetry is spontaneously broken.
After one year of debate, it seems now clear that the structure of states of the SK model breaks
the supersymmetry [10, 11], while in the p-spin spherical model the supersymmetry gives the
correct set of physical states [3, 9]. This fact is in agreement with the other known physical
features of these systems. Supersymmetry breaking occurs because metastable states are
marginal and very unstable under external perturbations [10–12], whereas well-shaped states,
with finite second derivative and large barriers surrounding them, preserve the supersymmetry.
This is exactly what we expect from the different dynamical behaviours and role of metastable
states, in the SK and p-spin models.

Classifying spin-glasses according to whether or not the supersymmetry is spontaneously
broken seems therefore a sound criterion to distinguish different structures of states, and thus
different static and dynamic behaviours. In order to understand the physical differences of these
two cases in a deeper way, it would be desirable to find a model where both structures of states
are present, and to study its analogies with the two archetypes described above, the SK and
the p-spin model. In this paper, we introduce such a model and show that supersymmetric and
supersymmetry-breaking states can coexist in the same system, albeit at different free energies.
We will argue that such a situation may be rather general in spin-glasses, and that the SK and
p-spin models correspond to the two extreme cases: the transition from supersymmetric to
supersymmetry-breaking states takes place at the ground state in the SK model, whereas the
transition occurs at the highest free energy in the p-spin spherical model.

Before starting our analysis, let us make a general remark. There is a dynamical form of
the supersymmetry, which arises when studying the Langevin dynamics of statistical models
[17, 19]. The important difference with its static counterpart described here, is that the
dynamical supersymmetry is always broken at low temperatures, in all models. In other
words, it is an intrinsic consequence of ergodicity breaking, linked to the breakdown of the
dynamical fluctuation–dissipation theorem [19]. On the other hand, the static supersymmetry
we are discussing may or may not be broken, according to the particular structure of states
displayed by each given model.

The Hamiltonian of the model we want to study is given by,

H = −
N∑

i1< ... <ip

Ji1...ipσi1 . . . σip − ε

N∑
l1< ... <lr

Kl1...lr σl1 . . . σlr , (1)

where the spins σi are real variables subject to the spherical constraint
∑

i σ
2
i = N, and

the Gaussian random couplings Ji1...ip and Kl1...lr have variance p!/2Np−1 and r!/2Nr−1,
respectively. We are therefore perturbing the p-spin spherical model with an extra r-
body interaction term. It is known that p + r spherical models may display a nontrivial
thermodynamic behaviour when p � 3 and r = 2: in that case there is a transition between a
1RSB thermodynamic phase (low ε), to an FRSB phase (large ε) [20]. On the contrary, if both
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p and r are strictly larger than two, we expect the model to have a normal 1RSB thermodynamic
behaviour. This is the case we will analyse. What we will show is that, even in this apparently
simple case, as soon as ε �= 0 the structure of metastable states becomes much richer than the
unperturbed p-spin model. In the following, all plots are done for p = 3 and r = 4. We note
that the dynamics of this model has been studied in [21].

Metastable states are the local minima of the mean-field free energy, that is the Thouless–
Anderson–Palmer (TAP) free energy [22]. The first thing to do is therefore to work out the
TAP free energy for this model. This can be done by following the method used by Rieger in
[23]. We will work with ε � 1, and thus keep only the lowest-order terms in ε. The TAP free
energy density is [24],

βfTAP = − β

N

N∑
i1< ... <ip

Ji1...ipmi1 . . . mip − ε
β

N

N∑
l1< ... <lr

Kl1...lrml1 . . . mlr − 1
2 log(1 − q)

− β2

4
[(p − 1)qp − pqp−1 + 1] − ε2 β2

4
[(r − 1)qr − rqr−1 + 1], (2)

wheremi = 〈σi〉 are the local magnetizations, andq is the self- overlap of a state, q = ∑
i m

2
i /N.

We had to keep the O(ε2) term since, after averaging over Kl1...lr , the linear term will also
become O(ε2). To compute the TAP complexity we closely follow the standard method, as
can be found, for example, in [4]. The number of TAP states with free energy density f is,

N (f) =
∫ ∏

i

dmi δ[∂iβfTAP(m)] det[∂i∂jβfTAP(m)] δ[βfTAP(m) − βf ], (3)

where, as usual, the modulus of the determinant has been dropped (for a discussion of this point,
see [15, 16, 18] and [4]). We give an exponential representation for the two delta functions
introducing the Lagrange multipliers xi and u, and of the determinant, with the anti-commuting
Grassmann vectors {ψ̄i, ψi} [4]. In this way we can write,

N (f) =
∫

DmDxDψ̄Dψ du eS(m,x,ψ̄,ψ,u;f ), (4)

where the action S is given by,

S(m, x, ψ̄, ψ, u; f ) = β

N∑
i

xi∂ifTAP(m) + β

N∑
ij

ψ̄iψj∂i∂jfTAP(m) + βufTAP(m) − βuf .

(5)

We work at the annealed level, which is exact for ε = 0. After averaging the number N (f )

over the disorder Ji1...ip and Kl1...lr , the integrals in Dm Dx Dψ̄ Dψ can be performed exactly,
provided that we introduce the parameters,

T = 1

N

N∑
i

ψ̄iψi, B = 1

N

N∑
i

ximi, q = 1

N

N∑
i

mimi. (6)

After some algebra we obtain,

N (f) =
∫

dT dB dq du eNŜ(T ,B,q,u;f ), (7)
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where the effective action Ŝ given by [24],

Ŝ = βu[g(q) + ε2h(q) − f ] + (B2 − T 2)
[

1
4p(p − 1)β2qp−2 + ε2 1

4 r(r − 1)β2qr−2
]

− 1
2 log

(
1
2β2pqp−2 + 1

2ε2β2rqr−2
) − log T + 1

4β2u2(qp + ε2qr) − 1
2

+ 1
4β2B2(pqp−2 + ε2rqr−2) + 2β(B + T )[A(q) + ε2C(q)]

+ 1
2β2uB(pqp−1 + ε2rqr−1), (8)

and where we used the following definitions:

g(q) = − 1

2β
log(1 − q) − β

4
[(p − 1)qp − pqp−1 + 1], (9)

h(q) = −β

4
[(r − 1)qr − rqr−1 + 1], (10)

∂g

∂mi

= A(q)mi, (11)

∂h

∂mi

= C(q)mi. (12)

From (7) we have that in the thermodynamic limit N → ∞ the complexity is given by the
effective action evaluated in the saddle-point values of the variational parameters T , B, q, u,

�(f) = 1

N
log N (f) = Ŝ(T , B, q, u; f )|saddle point. (13)

The saddle-point equations are not too difficult to solve. In fact, the parameters T and B can
be worked out explicitly as functions of q. On the other hand, the equation for q itself,

∂Ŝ(q, u; f )

∂q
= 0, (14)

is highly nonlinear and must be solved numerically. The complexity is naturally a function
of the free energy density f , so in principle we have to minimize Ŝ also with respect to u,
such that f remains the only free variable. However, f and u are conjugated variables (this is
clear from the form of the action in (5)). This means that we can either let f be free, work out
u = u(f) and study �(f), or let u be the independent variable, such that f = f(u) and study
�(u). It turns out that in general � is a smoother function of u than f , so we will mostly use
this last representation.

Action (5) is invariant under the generalized BRST supersymmetry [3, 4, 13, 14]. This
symmetry generates the following two Ward identities [3, 4],

〈m · x〉 = −〈ψ̄ · ψ〉, 〈x · x〉 = 〈uψ̄ · ψ〉. (15)

The first Ward identity immediately translates into an equation for the parameters T and B.
From equations (6) we have,

BSRT ⇒ B + T = 0. (16)

Given that both T and B are functions of q, imposing this relation is equivalent to impose an
extra equation for q, which has to be satisfied together with (14). By doing this we select the
supersymmetric solution of the saddle-point equations. It is straightforward to prove that the
second Ward identity in (15) gives a relation for q which is equivalent to (16).
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Figure 1. Unperturbed p-spin spherical model: the complexity as a function of the free energy
density. The stability parameter xp is zero at the threshold f = fth. The temperature is equal to
the dynamical temperature Td = 0.612 of the unperturbed model.

The saddle-point equations for the complexity may, in general, have many solutions. Some
of these solutions are supersymmetric (SS), and therefore satisfy the Ward identities (15),
whereas others are supersymmetry-breaking (SSB) solutions. These last solutions violate the
Ward identities. Physically, different solutions correspond to different structures of metastable
states, so selecting the correct solution, whether supersymmetric or not, is a key point. As we
have seen, from the studies performed so far, it seems that there are two classes of models. In
1RSB systems (as the unperturbed p-spin spherical model), the supersymmetry is not broken
[3, 9], so one can directly impose the Ward identities (15) to simplify the saddle-point equations
and find the physical complexity. In the SK model (and presumably in other FRSB systems),
the supersymmetric saddle point is unstable, and physical metastable states are described
by the SSB saddle point. In this case, imposing (15) gives the wrong result. In all these cases,
the main way to discriminate the physical from the unphysical solution is to test the stability
of the states described by the various solutions. In particular, a very important quantity is the
parameter introduced by Plefka in [25],

xp = 1 − β2

2N
p(p − 1)qp−2

∑
i

(1 − m2
i )

2. (17)

In order to have stable states, with a physical susceptibility, we must have,

xp � 0. (18)

We shall use the stability condition (18) to classify physical and unphysical solutions of the
saddle-point equation of our model. As a starting point we briefly discuss the case ε = 0, i.e. the
unperturbed p-spin spherical model [26]. As we have said, in this case the physical complexity
is the one corresponding to the supersymmetric solution of the saddle-point equations. Such
a solution can easily be found by imposing (16). The complexity � as a function of the free
energy density f (figure 1) is zero at the ground state f0, and it is defined up to a threshold
value fth, beyond which the saddle-point equations no longer have a solution. Threshold states
are marginal, i.e. they have a zero mode in the second derivative of the free energy, and xp = 0
(whereas xp > 0 for all states with f < fth).
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Figure 2. Unperturbed p-spin spherical model. Complexity as a function of u.
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Figure 3. Unperturbed p-spin spherical model. Upper panel: the stability parameter xp. Lower
panel: the supersymmetry parameter ξ.

The fact that threshold states are marginal suggests, in analogy with the SK model [10, 11],
that they may have a supersymmetry-breaking nature. If we study the complexity as a function
of the parameter u (figure 2), we find that �(u) increases with u up to a value uth = u(fth),
and beyond that point it remains constant, i.e. �(u) = �th for each u � uth. Note that above
uth also the free energy is constant, f(u) = fth for u � uth, and thus the flat branch of �(u)

is concentrated in the threshold point of �(f) in figure 1. The flat branch of the curve has
xp = 0 (figure 3), meaning, as we have already said, that threshold states are only marginally
stable. To assess the supersymmetric properties of this curve, we can introduce the following
parameter:

ξ = T + B. (19)

From (16) we have that ξ = 0 on a SS saddle point, and ξ �= 0 on a SSB saddle point. We
see from figure 3 that the flat branch of �(u) has ξ �= 0 and thus breaks the supersymmetry,
while the growing part of the curve is SS. It should be noted that the flat branch continues up
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Figure 4. Perturbed p-spin spherical model (ε = 0.45). The complexity as a function of u. Full
line: the SS solution. Dashed line: the SSB solution. Open circles indicate the physical solution;
T = 0.6Td .
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Figure 5. Perturbed p-spin spherical model (ε = 0.45). Upper panel: the stability parameter xp.
Lower panel: the supersymmetry parameter ξ; T = 0.6Td .

to u = 0, which corresponds to putting no constraint on the free energy, i.e. to count the total
number of states. In other words, in the p-spin spherical model, the total, that is the maximum,
complexity �th can be found either from the SS solution at u = uth, or from the SSB solution
at u = 0. The situation in the unperturbed case seems therefore quite strange: if we use f as
a natural variable, we have states up to f = fth, and these are all supersymmetric and stable.
Only threshold states are marginally stable. On the other hand, using u as a variable, we find a
degenerate interval between uth and 0, where the complexity and the free energy remain stuck
at their threshold levels, fth and �th, and where the supersymmetry is broken. This situation
becomes clearer once we perturb the system.

When we switch on the perturbation ε we recognize that the ε = 0 case is just the peculiar
(and rather pathological) limit of a more general physical situation. We first analyse � as a
function of u (figures 4 and 5). There are two solutions of the saddle-point equations for each
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Figure 6. Perturbed p-spin spherical model (ε = 0.45). Complexity as a function of the free
energy density, around f = fth. Inset: the full curve �(f); T = 0.6Td .

value of u: the SS solution, and the SSB one. These two branches touch at u = uth(ε). Below
this point, the parameter xp is negative for the SSB solution, and positive for the SS one. On
the other hand, xp changes sign for both solutions at uth, and thus the physical stability of the
two solutions switches at uth. As a result SS states are the physical states below uth, whereas
SSB states become physical above uth. As can be seen from the plot, the SSB branch is very
weakly dependent on u when ε is small, and in the limit ε = 0 it is just flat, as in figure 2.

Therefore, threshold states are, in the general case, at the same time the highest SS and
the lowest SSB states. This is in agreement with the marginal nature of these states, as it was
already quite clear in the unperturbed case. It is interesting to note that the SSB solution in
its stable phase u > uth is completely analogous to the SK model, suggesting that the same
connection holds also for the physical properties of the two models in this phase. The fact that
the SK model has an FRSB thermodynamics, while the present one is a strictly 1RSB model,
is simply due to the fact that for the present model,

�(uth) > 0, (20)

such that the SSB states do not contribute to the statics. The statics of the SK model is FRSB
simply because the threshold states in that model coincide with the ground states, i.e.

SK: �(uth) = 0. (21)

On the other hand, in the unperturbed p-spin model we have the opposite extreme behaviour:
there are no states whatsoever above the threshold, and therefore no SK phase, not even in the
metastable spectrum of states.

The crossover between an SS and an SSB phase can also be analysed by looking at the
behaviour of � as a function of f . Let us consider first the SS solution: the complexity grows
from f0 where it is zero, up to a value fth = f(uth), where u = uth. Beyond uth both � and f

decreases, giving rise to a new branch of the SS curve �(f ). This backward branch is SS, but
unphysical, since xp < 0. The SSB solution takes over exactly at fth, providing a continuation
of �(f) beyond the threshold. This state of affairs is reproduced in figure 6, where we plot �

in a neighbourhood of fth. Therefore, unlike in the unperturbed p-spin spherical model, we
have some physical states also above the threshold, and these states have a SSB structure. Note



Coexistence of supersymmetric and supersymmetry-breaking states in spherical spin-glasses 11319

that in this context fth is not the largest free energy density of metastable states (as normally
in the literature), but it is the largest free energy density of supersymmetric metastable states.

Our result suggests that the most general structure of metastable states in spin-glasses is
the following. At low free energies lie SS states: these are non-marginal minima of the free
energy, well separated from each other by large barriers. The stability of these states decreases
with increasing energy: the softest mode of their second derivative matrix is smaller the larger
the f . At the threshold energy SS states become unstable, and above this point SSB states
are the physical ones. Presumably, as in the SK model, SSB states are marginal, in the sense
that they have a zero mode leading out of the states, and therefore are not well separated by
large free energy barriers.

This crossover in free energy between SS and SSB states has important consequences
on both the static and dynamical behaviour of a system. As we have said above, when the
transition free energy, i.e. the threshold fth is larger than the ground state free energy f0, SS
states dominate the thermodynamic properties, and the model is statically 1RSB. If, on the
other hand, fth is equal to f0, the model has an FRSB statics. Note that the difference,

	 = fth − f0, (22)

may depend on the external parameters, such as the temperature, the field or any other
parameter. In the present model, by changing the temperature, 	 changes, but it always remains
strictly positive, so that the model is always statically 1RSB. However, for other systems the
situation may be different. In particular, in the Ising p-spin model, there is a transition between
a 1RSB and an FRSB phase at the Gardner temperature TG [27]. Moreover, it has been proved
in [28] that in this model a crossover occurs from 1RSB to FRSB metastable states in the
complexity. Thus, what we expect is that in such a model the supersymmetric threshold
becomes equal to the ground state at TG, i.e. 	(TG) = 0. The study of the supersymmetric
properties of the Ising p-spin model will appear in [29]. Preliminary results are in agreement
with what we have shown here.

From a dynamical point of view, it is reasonable to assume that ergodicity is broken by
the highest non-marginal, i.e. supersymmetric, states. Therefore, we expect that the dynamical
transition is triggered by threshold states. In systems where fth > f0, as for the spherical p-spin
model, we will have Td > Ts, whereas in systems where fth = f0, as in the SK model, Td = Ts.
We would like to remark that the high free energy transition between SS and SSB metastable
states, and its consequences on the static and dynamical behaviour of spin-glasses, was for
the first time discussed and understood in [28], albeit not in a supersymmetric context. In that
study, the same phenomenon was interpreted as a 1RSB to FRSB transition in the spectrum of
states. The physics, however, is the same.

In this paper we have analysed a spin-glass model where a crossover takes place between
low-energy supersymmetric states, and higher-energy supersymmetry-breaking states. The
model is always solved, at the static level, by a 1RSB thermodynamic ansatz, although SSB
states have the same physical structure as in FRSB systems. This is due to the fact that the
crossover always occurs at energies higher than the ground state. Our study and the results
of [28] suggest that this may be the generic scenario, and that different static and dynamic
behaviours may just depend on whether the transition free energy, i.e. the threshold, is larger
than or equal to the ground state free energy.
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